Erythropoietin (EPO) and protein based drug

Fuyu Guan, Eric Birks, Cornelius E. Uboh, Jinwen Chen, Janis Mitchell and Lawrence R. Soma

Pennsylvania Equine Toxicology and Research Center
West Chester, PA
and
University of Pennsylvania, School of Veterinary Medicine, New Bolton Center Campus, Kennett Sq. PA
Size: Small vs. large molecules

Dihydroergocornine MW 564

Oxyglobin™ (64,000 Daltons)
Size: Small vs. large molecules

Dexamethasone (392.5)

Erythropoietin (34,000 Daltons)
Proteins & protein based drugs

- Proteins are the body's functional machinery and are made according to the DNA blueprints that carry out most cell functions.
- All naturally occurring proteins are made from ~20 amino acids.
- Proteins are regulators of body functions.
- Protein can be a bio-marker for a disease or metabolic disorder.
- Deficiency can result in a metabolic disorder.
- Protein based drugs are substitutes for that specific protein.
- Recombinant drugs are replicates of natural occurring protein.
- Example “rHu-EPO”
Forms of Erythropoietin

EPO (Epogen) a protein with a sugars attached (Glycoprotein).

Darbepoetin (Aranesp) differs from EPO contains 5 N-linked carbohydrate.
Additional carbohydrates

- Darbepoetin (Aranesp) - Long-Acting EPO
- The additional carbohydrates result in longer half-life and increased biologic activity.
- Remain in blood stream longer
- Half-life of EPO 6-8 hours; ~ 3X for DAR
- Consequence of longer presence is detection
Erythropoietin is the primary regulator of mammalian RBC production

Low oxygen - stimulation of natural EPO production

OR injection of rHu-EPO

Man vs. horse

Red Blood Cell Increase
Uses

- Treatment of disease that produced anemia - man, dog, cat
- No known medical use in horses
- EPO has been misused as a performance-enhancing drug in endurance athletes.
- EPO has been banned by all sports organizations.
- EPO administration can be dangerous in healthy humans.
- Deaths in the horse have been reported
- Mechanism is different in horse and human
Amino Acid Sequences of Human and Equine EPO

- Human EPO
 - APPR LICDSR VLERYLLEAK EAENITTGCA EHCSLNENIT VPDTKVNFYA WKRM EVGQQA VEVWQGLALL SEAVLRGQAL LVNSSQPWEP LQLHV DKAVS GLRSLTTLLR ALGAQKEAIS PPDAASAAPL RTITADTFRK LFRVYSNFLR GKLKLYTGEA CRTGD

- Amino acids marked in red - carbohydrates attached.

- Equine EPO
 - PPR LICDSRVLERYILEARE AENVTMGCAE GCSFGENVTVPD TKVN FYSW KRMEVEQ QAV EVW QGLALLS EAI LQGQALLANS SQPSetL RLHV DKAVSS LRSL TSLLRA LGAQKEAISPPDAASAAPLR TFAVDTLCKL FRI YSNFLRG KKL KLYTGEAC RRGDR
Enzymatic digest done using trypsin: Cleavage at –R (arginine) and –K (lysine)

Legend:
Protein Sequence
rHu-EPO
rHu-DPO
Equine EPO
LC-MS chromatogram of Darbepoetin alpha digestion
Extraction of rHu-EPO & rHu-DAR from plasma by immunoaffinity separation

- Anti-EPO antibodies linked to magnetic beads.
- The beads are incubated with equine plasma for ~24 h.
- The beads are washed.
- EPO or DAR alpha remaining on the beads are eluted (removed) with a elution buffer.
- The eluate containing EPO or DAR is subject to buffer exchange.
- After buffer exchange, EPO or DAR are ready for digestion.
Trypsin Digestion

- rHu-EPO or rHu-DAR alpha incubated in trypsin at 37 °C for 3 hr.

Liquid chromatography column

- LC column: Zorbax Stable Bond guard column

LC-MS/MS

- Mass spectrometer: LTQ linear ion Trap (Thermo-Finnigan)
Actions of foreign proteins

- In animals rHu-EPO is a foreign protein.
- Body produces antibodies against this protein.
- Reduction in RBC count associated with long term adm.
- Reports of death in horses.
- Antibodies measured in the horse.
Anti-rhEPO antibodies detected in equine plasma during and after IV injection of 8 doses of rHu-EPO (4000 IU/dose).
Anti rHu-EPO in several equine populations

<table>
<thead>
<tr>
<th>Breed</th>
<th>Status</th>
<th>Numbers</th>
<th>Titer >1:2</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB</td>
<td>Racing</td>
<td>389</td>
<td>11</td>
<td>2.8</td>
</tr>
<tr>
<td>STB</td>
<td>Racing</td>
<td>274</td>
<td>53</td>
<td>19.3</td>
</tr>
<tr>
<td>Various</td>
<td>Non racing</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TB</td>
<td>Retired</td>
<td>16</td>
<td>2</td>
<td>12.5</td>
</tr>
<tr>
<td>TB</td>
<td>Injected</td>
<td>3</td>
<td>3</td>
<td>100</td>
</tr>
</tbody>
</table>
ELISA R&D Kit

Hours

Plasma Conc (IU/ml)

- t$_{1/2}$: 6-8 hours

- 4000 IU
- 8000 IU
- 16000 IU

Concentrations:
- 0.15 ng/ml
- 0.12 ng/ml
- 0.06 ng/ml
rHu-DAR (25 mg weekly)

Plasma conc. (ng/ml)

24 h last dose

not detected
EPO ELISA Kits

- Neogen
- R & D Systems
- Stem Cell Technologies
Support

- Pennsylvania Horse & Harness Racing Commissions
- Pennsylvania Standardbred Horseman Association at Pocono Downs and the Thoroughbred Horseman Association a Philadelphia Park.
- The authors thank Donna Telies, Anne Hess, and Fengyu Hao for their excellent technical assistance.

Thank you
Existing methods

- rhu-EPO is less negatively charged than natural human EPO.
- Based on this difference a combination of immunoblotting isoelectric focusing method has been developed.
- Time-consuming, expensive, not good for screening multiple samples, very specialized laboratory.
- Not suitable for equine industry?
250 µg/ml oxyglobin spiked to pl

Plasma and horse Hemoglobin

Plasma and Oxyglobin

Plasma